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� Biosolids and biochar can have posi-
tive effects on plant growth.

� Some high temperature biochars may
contain endocrine active chemicals.

� A soil-specific extraction and
luciferase-based bioassay (CALUX)
can be used to detect endocrine
active chemicals in soil.
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Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, po-
tential unintended impacts on human health and the environment must be considered. Virtually all
biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharma-
ceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is
to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical
properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment.
We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to
detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both
biochar (walnut shell, 900 �C) and biosolids had positive impacts on carrot and lettuce biomass accu-
mulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor
activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar
rate tested (100 t ha�1) is above the average agronomic rate (10e20 t ha�1), endocrine effects would not
be expected in most environmental applications. The effect of high temperature biochars on endocrine
system pathways must be explored further, using both quantitative analytical tools to identify potential
endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the
resulting biological activity of such compounds.

© 2017 Elsevier Ltd. All rights reserved.
.

mailto:sjparikh@ucdavis.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemosphere.2017.04.035&domain=pdf
www.sciencedirect.com/science/journal/00456535
www.elsevier.com/locate/chemosphere
http://dx.doi.org/10.1016/j.chemosphere.2017.04.035
http://dx.doi.org/10.1016/j.chemosphere.2017.04.035
http://dx.doi.org/10.1016/j.chemosphere.2017.04.035


C.G. Anderson et al. / Chemosphere 181 (2017) 160e167 161
1. Introduction

Biosolids are the repository for a substantial portion of nutrients
consumed in the form of food. Returning biosolids to food pro-
duction systems can help “close the loop” in nutrient cycling
(DeLuca, 2009). A challenge is that biosolids contain not only plant
nutrients, but also pharmaceuticals (Table A.1) (U.S. Environmental
Protection Agency, 2009).

Many organic contaminants commonly found in biosolids, such
as pharmaceuticals and personal care products, sorb strongly to
organic matter (Aristilde and Sposito, 2010; Carmosini and Lee,
2009; Rogers, 1996) and clays (Carmosini and Lee, 2009;
Carrasquillo et al., 2008) due in part to their low solubility and
the interactive effects of their multiple functional groups (MacKay
and Seremet, 2008). Many pharmaceuticals exhibit a high sorption
affinity to biosolids (Wu et al., 2009). For example, the antibiotic
ciprofloxacin is not significantly removed after methanogenic
wastewater treatment due to its high sorption properties (Golet
et al., 2003). The antibacterials triclosan (TCS) and triclocarban
(TCC) have low water solubility, high octanol-water partitioning
coefficients (Kow), and high organic carbon-water partitioning co-
efficients (Koc) (Table A.2), and thus have a moderate affinity for
solids. These compounds accumulate in biosolids and are found in
nearly all wastewater treatment plant (WWTP) effluents (U.S.
Environmental Protection Agency, 2009). Additionally, biodegra-
dation studies have demonstrated that some pharmaceuticals or
their residues can persist in the soil environment for over six
months after application (Boxall et al., 2006). Together, these
properties suggest that pharmaceuticals applied to land in biosolids
could accumulate and persist in the environment (N€aslund et al.,
2008).

Ciprofloxacin, TCS, and TCC are classified as “contaminants of
emerging concern” by the US EPA, a designation for substances
present at trace but potentially ecotoxicologically critical concen-
trations (Lozano et al., 2010). While many pharmaceutical residues
in environmental samples are relatively low in concentration,
especially compared to the prescribed human dosage, non-specific
bioactivity of these drugs might reach environmentally-relevant
levels, causing adverse effects on soil biota and biologically-
driven ecosystem services (Dolliver et al., 2007; Jones-Lepp et al.,
2010; Kumar et al., 2005; Lillenberg et al., 2010). It is of particular
concern that several emerging contaminants, including TCS (Foran
et al., 2000) and TCC (Chen et al., 2008) have capacity for
endocrine-disrupting activity, or disruption of normal hormonal
functions in biota. Since land application is a common means for
disposal of biosolids produced at USwastewater treatment facilities
(National Research Council, 2002), cost-effective technologies are
needed to prevent associated pharmaceuticals from contaminating
the environment or affecting human health.

Biochar, a carbonized byproduct of the pyrolysis of organic
biomass, is an increasingly common soil amendment and may
provide agronomic benefits (Laird et al., 2010; Lehmann et al.,
2003; Van Zwieten et al., 2010). Using biochar as a co-
amendment with biosolids could potentially reduce bioavail-
ability and toxicity of endocrine-disrupting chemicals (EDCs) found
in biosolids. Because of its high aromaticity and surface area, bio-
char can effectively sorb many organic chemicals introduced into
the environment (Jung et al., 2013; Yao et al., 2012). This, in turn,
could decrease bioavailability and limit bioaccumulation of EDCs in
plants (Khan et al., 2013; Yu et al., 2009). While use of biochar has
been investigated in treating heavy metals (Park et al., 2011) and
pesticides (Yu et al., 2009), the effect of biochar co-amendment
with biosolids on the bioavailability and resulting activity of EDCs
is unknown. The physical-chemical properties of biochar (e.g., pH,
surface area, elemental composition) vary depending on
parameters such as feedstock and pyrolysis temperature (Mukome
et al., 2013b), and biochars produced via gasification have been
shown to have high levels of EDCs such as polycyclic aromatic hy-
drocarbons (PAHs) (Cole et al., 2012; Hale et al., 2012).

Pharmaceutical residues in environmental samples are often
analyzed using chemical methods such as liquid chromatography
tandem mass spectrometry (LC/MS/MS), which can resolve trace
environmental concentrations of specific compounds of known
mass with high precision. However, such analyses measure a total
concentration and not the concentration of the contaminant that
will actually be biologically available.

An alternative approach is application of the Chemically-
Activated Luciferase Expression (CALUX) bioassay (Denison et al.,
2004) that can measure the combined ability of chemicals extrac-
ted from environmental matrices, including biosolids- and biochar-
amended soil, to stimulate hormone receptor signaling pathways.
These CALUX bioassays are recombinant cell lines that contain a
stably transfected nuclear receptor responsive firefly luciferase
reporter gene and they respond to activators/inhibitors of these
receptors in a chemical-, time-, concentration- and receptor-
specific manner with the induction/inhibition of luciferase activ-
ity and measurement of light output (Denison et al., 2004). CALUX
bioassays based on estrogen receptor (ER), androgen receptor (AR),
glucocorticoid receptor (GR), progesterone receptor (PR) and aryl
hydrocarbon receptor (AhR) have been previously developed and
used to determine the total biological activity (activation/inhibi-
tion) of a chemical(s) or extract on a given receptor pathway
(Giudice and Young, 2011; Lorenzen et al., 2004; Topp et al., 2006;
Zhang et al., 2009). Measurement of endocrine active chemicals in
biosolids with CALUX bioassays have been used as amethod both to
characterize such activity (Lorenzen et al., 2004; Topp et al., 2006;
Zhang et al., 2009) and for environmental mobilization studies
(Giudice and Young, 2011). In addition to showing high sensitivity
and specificity for known endocrine-disrupting hormone receptor
agonists and antagonists (van der Linden et al., 2008), the CALUX
bioassay can provide an estimate of the overall activity of mixtures
of compounds such as may be found in biosolids or in soil after
biosolids application.

In this study, we measured the individual and combined effects
of biochar and biosolids co-amendments on endocrine active
chemicals in soil from greenhouse-grown lettuce and carrots. We
utilized CALUX bioassays to specifically target androgen, estrogen,
aryl hydrocarbon, and glucocorticoid/progesterone receptors, and
hypothesized that biochar preferentially sorbs organic pharma-
ceuticals decreasing their bioavailability in the soil and thus po-
tential to produce endocrine disrupting effects. Therefore, we
expected to see lower bioassay activity levels in the biosolids-
biochar treatments with high biochar application rates.

2. Materials and methods

2.1. Soil, biosolids, and biochar

A greenhouse experiment was conducted using a loamy sand
(Columbia series, Aquic Xerofluevent) collected from USDA-NRCS
Lockeford Plant Materials Center (Lockeford, CA). Soil particle size
distribution was determined using the hydrometer method (82.5%
sand, 6.0% clay) and water-holding capacity was determined using
a common field method whereby soils were saturated and allowed
to drain until drainage stopped (0.52 g g�1). Biosolids were pro-
vided by the Woodland Wastewater Treatment Plant (Woodland,
CA), derived from an extended aeration activated sludge process.
Macronutrient (N, P, K) data for soil and biosolids were determined
by the combustion method for total N (AOAC Official Method
972.43), a KCl extraction using a flow injection analyzer for NO3-N



C.G. Anderson et al. / Chemosphere 181 (2017) 160e167162
and NH4-N (Table A.3) (Knepel, 2003), the Olsen-P method for
bioavailable P (Prokopy, 1995), and ammonium acetate displace-
ment for exchangeable K (Thomas, 1982). The application rate of
biosolids usedwas 63.1 g biosolids kg�1 soil based on plant demand
for nitrogen, calculated at a rate of 200 kg N ha�1 to 30 cm (Evanylo
et al., 2006). Non biosolids-amended treatments received the
equivalent N in mineral fertilizer. Based on the 16-16-16 fertilizer
(Lilly Miller Brands, Walnut Creek, CA, USA) used, 87.4 kgha�1

phosphorus, 166 kg ha�1 potassium and 62.5 kg ha�1 sulfur were
also applied. The biochar was made from walnut shells (Juglans
californica) using a Biomax 50 downdraft gasifier at Dixon Ridge
Farms (Winters, CA, USA) (Mukome et al., 2013a), as part of awaste-
to-energy process (Pujol Pereira et al., 2016). Detailed information
on the physical and chemical characteristics of this biochar have
been detailed elsewhere (Mukome et al., 2013b). The pyrolysis
temperature was 900 �C, resulting in an ash content of 46.6% and a
specific surface area of 227.1 m2 g�1 and total N of 0.47% (Mukome
et al., 2013b). The walnut shell biochar was chosen specifically
because it has been shown to performwell compared to other chars
as a sorbent for pharmaceutical (and other) contaminants (Bair
et al., 2016).

2.2. Chemicals

Biosolids were spiked with ciprofloxacin, TCS, and TCC (Sigma-
Aldrich, St. Louis, MO, USA), at concentrations slightly higher than
the maximum concentrations found in municipal biosolids from
throughout the US (Table A.1) (U.S. Environmental Protection
Agency, 2009). The spiking levels were determined by a mass bal-
ance approach to estimate the amount of plant-available pharma-
ceuticals based on sorption coefficients of the soil, biosolids, and
biochar. The pharmaceuticals were spiked in air-dried biosolids in
0.1% formic acid in methanol, at concentrations of 100 mg kg�1

ciprofloxacin, 200 mg kg�1 TCS, and 500 mg kg�1 TCC. The meth-
anol was allowed to evaporate in a fume hood for 24 h before
application of the biosolids to soil.

2.3. Experimental design and sample collection

A leaf crop (lettuce, Lactuca sativa L.) and root crop (carrot,
Daucus carota) were planted in 4-L pots of 2 mm-sieved soil in a
factorial design that combined three levels of biochar application
(0,10, and 100 t ha�1), and two levels of biosolids application (0 and
20 t ha�1). A high biochar application (100 t ha�1) was chosen to
assess if this rate resulted in more benefits (e.g., increased plant
growth or decreased pharmaceutical bioavailabilty) than a more
standard application rate (10 t ha�1). A high biochar application
rate (100 t ha�1) has been shown to maximize crop productivity
(Jeffery et al., 2011), and while this rate may not be economically
feasible in broadcast application, targeted (banded) application
may allow for high targeted rates of biochar inputs (Blackwell et al.,
2010). Each biosolids-biochar treatment consisted of five replicates
per plant type. Water-holding capacity was determined as detailed
above for each biosolids-biochar treatment, and was maintained
across treatments at 60e70% with DI water. Plants were grown in a
temperature- and light-controlled greenhouse (Hoagland Hall, UC
Davis, CA) from November 30, 2012, until harvest on January 30,
2013 (62 d). Upon harvest, soil samples were taken and deep-frozen
(�80 �C) until further analysis. Above- and below-ground plant
biomass values were determined after freeze-drying plant samples
for 48 h.

2.4. Sample preparation and CALUX analysis

To directly assess the bioavailability of these compounds from
soil, all samples were extracted with 18.2 MU-cmwater (Barnstead
Nanopure) instead of organic solvents (Andersson et al., 2009; Hale
et al., 2012; Kanematsu et al., 2009). All references to the water
extraction are to 18.2 MU-cm water. All extraction glassware was
washed, rinsed in water, acid-washed in 1 N H2SO4 and autoclaved
for 30 min. Two grams of 2 mm-sieved air-dried soil in glass
centrifuge tubes with Teflon-lined caps was extracted with 30 mL
water in an ultrasonication bath for 30 min in the dark, followed by
centrifugation at 3500 rpm for 20min. The supernatant was filtered
through Whatman GF/F glass fiber filters using Buchner funnels
into glass culture tubes and the filtrate acidified to pH 2 with HCl.
The samplewas then concentrated using solid phase Oasis HLB 6-cc
cartridges (Waters Corporation, Milford, MA) (Giudice and Young,
2011), and evaporated to dryness in glass vials at room tempera-
ture under a gentle stream of nitrogen. The dried residues were
resuspended in 50 mL of DMSO and analyzed using CALUX bioassays
to determine the presence and relative concentration of activators
of ER, AR, GR, PR and AhR signaling pathways (ER: 17b Estradiol, AR:
dihydroxytestosterone, GR: dexamethasone, PR: progesterone, and
AhR: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). CALUX bio-
assays were carried out as previously described (Giudice and
Young, 2011) and the results expressed relative to the activity ob-
tained with a maximal inducing concentration of the positive
control chemicals for each receptor-selective CALUX bioassay,
normalized per gram dry soil to allow for cross-treatment
comparison.

2.5. LC/MS/MS

HPLC-ESI/MS/MS was used to determine recovery efficiency of
the extraction method (SI, Tables A.4e6).

2.6. Statistical analysis

All statistical analyses were performed using the R computing
package (R Core Team, 2016) version 3.2.4. For analysis of the
CALUX bioassay, data from the lettuce and carrot trials were pooled.
Two-way analysis of variance (ANOVA) was performed for CALUX
bioassay and plant biomass data with biosolids and biochar levels
as factors. We found no significant effect of the biosolids � biochar
interaction and therefore proceeded with analysis with biosolids
and biochar as main effects. Tukey's honest significant differences
(HSD) were used as post hoc tests to assess treatment differences.
Differences were determined to be statistically significant if
p < 0.05. The relationship between CALUX bioassay activity levels
and plant growth were assessed using regression analysis.

2.7. Data and analysis code availability

All data and analysis code will be available at https://github.
com/carolynanderson/calux.

3. Results and discussion

3.1. CALUX bioassay detects endocrine active chemicals in biosolids-
biochar co-amended soil

Soil samples from both the lettuce and carrot trials show low
levels of AhR activity, in all combinations of biosolids-biochar
treatments (Fig. 1, Table 1). The addition of biosolids significantly
increased the AhR activity in soils compared to no biosolids treat-
ments (mean values from 4.7% to 6.9%), as did the addition of
biochar compared to no biochar treatments (mean values from 4.3%
to 7.4%), but this was only significant at the highest biochar appli-
cation rate (100 t ha�1). These results suggest that biosolids and

https://github.com/carolynanderson/calux
https://github.com/carolynanderson/calux


Fig. 1. Aryl hydrocarbon receptor (AhR) activity in pooled soil extracts from biosolids-
biochar treatments, as measured by the AhR-CALUX bioassay. AhR activity as
expressed as relative light units normalized to the activity observed with a maximally
inducing concentration of TCDD. Box plots show medians with the middle bars, sur-
rounded on the top and bottom by the first and third quartiles, respectively. The
highest and lowest data points within 1.5 times the interquartile range are shown by
the whiskers; outliers are represented as points.
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biochar contain AhR active chemicals; this is supported by previous
studies reporting the presence of the AhR agonist TCS in biosolids
in trace quantities (Ahn et al., 2008). Interestingly, extracts from soil
samples revealed no activators of the ER, AR, GR or PR CALUX
bioassays (data not shown); the presence of antagonists of these
receptors was not determined.

More specifically, in non-biosolids amended treatments, AhR
activity increased with increasing biochar application rate (Fig. 1),
suggesting that this 900 �C walnut shell biochar itself may be a
source for AhR active compounds. Based on this result, an extensive
non-target analysis for biochar-associated compounds which may
responsible for increased AhR activity is warranted. However, some
of the compounds in biochar that could increase AhR activity
include PAHs and dioxins (Quilliam et al., 2013; Stevens et al.,
2009), both byproducts of biochar production, depending on the
feedstock and production process and temperature (Hajaligol et al.,
2001; Hale et al., 2012). Specifically, PAH levels exceeding envi-
ronmental standards have been detected in biochars produced via
gasification (i.e., in the presence of oxygen) (Cole et al., 2012; Hale
Table 1
Two-way ANOVA of AhR activity levels, with biosolids and biochar application rates as f

Degrees of freedom, d.f. Sum of squares, SS

Biosolids 1 75.31
Biochar 2 123.18
Residuals 56 687.68
et al., 2012), the method used to form the walnut shell biochar used
in this study. This is in contrast to biochars formed via pyrolysis (i.e.,
in oxygen-limited conditions), which show decreasing PAH con-
centrations with increasing pyrolysis temperatures (Hale et al.,
2012; Keiluweit et al., 2012; Zieli�nska and Oleszczuk, 2016). It is
important to note that while the highest biochar application rate
tested in our study (100 t ha�1) was over 10 times the most com-
mon agronomic rate used in land application, benefits (as measured
by crop productivity) have been demonstrated with biochar ap-
plications at this rate (Glaser et al., 2002; Jeffery et al., 2011).
However, high rates of biochar application have also been shown to
cause a change in microbial community composition and a physi-
ological response to stress in Gram-negative bacteria, in addition to
a significant reduction in soil nitrate (Ippolito et al., 2014). Addi-
tionally, our use of an environmentally-relevant water-based
extraction method most likely contributed to low concentrations of
PAHs and dioxins extracted from these samples compared to that
which could be obtained with a nonpolar solvent extraction
method (e.g. methanol, toluene) (Andersson et al., 2009; Hale et al.,
2012; Kanematsu et al., 2009), suggesting that endocrine active
compoundsmay not be of significant concern under environmental
conditions.

The relationship between individual biochar feedstock proper-
ties and the concentration and composition of PAHs and other AhR
ligands is still poorly understood, as is the environmental fate of
PAHs in a soil application of biochar (Bucheli et al., 2015; Dutta
et al., 2016). Given that the AhR can bind a wide range of struc-
turally diverse chemicals (DeGroot et al., 2011; Denison et al., 2011),
biochar and biosolids could contain a variety of active chemicals,
the identity of which remains to be determined. This warrants
more research to assess AhR activity-inducing compounds in
different biochars, and determine whether the presence of these
compounds has negative implications for environmental or human
health. The CALUXmethod is a novel approach that can directly and
sensitively detect such activity, and can be used in tandem with
traditional analytical approaches which by themselves may not be
sufficient (Mayer et al., 2016).
3.2. Biochar and biosolids effects on lettuce growth

Only biochar, not biosolids, significantly affected lettuce shoot
growth. The presence of biochar significantly increased shoot
growth (10 t ha�1 biochar ¼ 16.0 ± 0.32 g; 100 t ha�1

biochar ¼ 16.07 ± 0.48 g) compared to no biochar (15.22 ± 0.69 g;
Fig. 2a). In non-biosolids amended treatments, the presence of
biochar significantly increased lettuce shoot growth (16.15 ± 0.33 g
for 10 t ha�1 biochar, 15.91 ± 0.38 g for 100 t ha�1 biochar)
compared to the non-biochar treatment (15.09 ± 0.34 g).

Both biochar and biosolids treatments had significant effects on
lettuce root growth. Lettuce plants that received any level of bio-
char had significantly higher root biomass (10 t ha�1

biochar ¼ 12.96 ± 0.17 g; 100 t ha�1 biochar ¼ 13.12 ± 0.25 g), than
those without biochar (12.60 ± 0.16 g) (Fig. 2b). Biochar has been
shown to stimulate root growth by increasing water and nutrient
availability, aeration, and soil pH (Lehmann et al., 2011) (although
in the current study plants were watered regularly, and thus pos-
itive effects on water retention are probably negligible).
actors. Differences were determined to be statistically significant if p < 0.05.

Mean squares, MS F-statistic p-value

75.31 6.13 0.0163
61.59 5.02 0.0099
12.28



Fig. 2. Growth differences in lettuce and carrot shoots (a) and roots (b) in biosolids and
biochar treatments. Box plots show medians with the middle bars, surrounded on the
top and bottom by the first and third quartiles, respectively. The highest and lowest
data points within 1.5 times the interquartile range are shown by the whiskers; out-
liers are represented as points.
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Biochar also appears to mitigate potentially negative effects of
biosolids on lettuce root growth, but only at the highest biochar
application rate in this study (Fig. 2). In treatments without bio-
solids, lettuce root biomass significantly increased with the addi-
tion of biochar (10 t ha�1 biochar ¼ 13.21 ± 0.11; 100 t ha�1

biochar ¼ 13.24 ± 0.22) compared to no biochar (12.63 ± 0.23 g). In
the biosolids treatments, biochar significantly increased lettuce
root biomass only in the 100 t ha�1 biochar treatment
(13.00 ± 0.23 g) compared to the no biochar treatment
(12.57 ± 0.07 g). Further, in the absence of biochar there were no
significant differences in lettuce root growth in biosolids-amended
and unamended treatments. It is possible that compounds in bio-
solids (e.g., salts, excess nutrients) might negatively affect lettuce
root growth (Andr�es et al., 2011), and these results suggest that a
high biochar application rates can overcome this. Similar green-
house studies show that biochar feedstock type is an important
determinant in the plant response to biochar. Different biochar
feedstocks have been shown to increase corn, grass, and barley
growth (Griffin et al., 2017; Jones et al., 2012; Prendergast-Miller
et al., 2014; Rajkovich et al., 2012), although contrary to the re-
sults of the current study, this effect can be negated at high biochar
application rates (e.g., 91 t ha�1) (Rajkovich et al., 2012). Further,
the effect of biochar can differ in greenhouse vs. field studies (Jones
et al., 2012; Rajkovich et al., 2012).

Together, these root and shoot growth data suggest that the
walnut shell biochar has a greater impact on lettuce growth than do
biosolids, at least at the given application rates.While biochar on its
own has been shown to increase plant growth (Khan et al., 2013;
Lehmann et al., 2003), this positive effect could be negated by
toxicity from high levels of volatile organic matter in some biochars
(Deenik et al., 2010; Lehmann et al., 2011). Furthermore, while
biosolids have been shown to increase crop yield (Binder et al.,
2002; Christie et al., 2001; Singh and Agrawal, 2008), potential
differences in lettuce biomass in the current study between bio-
solids and non-biosolids treatments might have been obscured by
additions of N fertilizer to non-biosolids pots to remove differences
in fertility among the treatments.

3.3. Biochar and biosolids effects on carrot growth

In the carrot treatments, there were no significant differences
between biosolids and biochar treatments in root or shoot growth
(Fig. 2). In contrast to what was observed in lettuce, the addition of
biosolids, regardless of biochar concentration, significantly
increased carrot shoot mass. This pattern of increased plant growth
with biosolids was different from that found in the lettuce plants,
suggesting that there might be different growth responses between
lettuce and carrot plants in the presence of compounds found in
biosolids. Differences in contaminant uptake in leaf and root crops
have been demonstrated and attributed to both physiological and
chemical differences in the plants. For example, the mechanisms of
uptake of veterinary medicines by lettuce and carrot plants have
been shown to follow Gaussian and non-Gaussian relationships,
respectively (Boxall et al., 2006). Differences in uptake have also
been ascribed to the chemistry of the contaminant and its matrix;
for example, low uptake of TCS in radish root has been attributed to
low ionization of TCS in the study soil (Carter et al., 2014). Such
plant growth differences warrant further research, but this is
outside the scope of the current study. It may be that any negative
effects of pharmaceuticals in biosolids on carrot root and shoot
growth are mitigated by the high carbon and nutrient contents of
biosolids. Such trends are seen in crop yields (Singh and Agrawal,
2008) and in microbially-driven soil nutrient cycling processes,
which either increase or remain unaltered in the presence of bio-
solids (Park et al., 2013). It is also possible that pharmaceuticals or
other contaminants in biosolids are sorbed strongly to the organic
matter matrix of the biosolid itself, or biochar if present, limiting
plant uptake (Yao et al., 2012), although the sorption dynamics
depend on the individual contaminant and biosolids or biochar
matrix. Further, as previously mentioned, the uptake dynamics
between lettuce versus carrot plants depend on physiological dif-
ferences as well as chemical differences in the compound, which
may explain why these plants responded differently to the treat-
ments in regards to growth.

3.4. Environmental implications

While we hypothesized that the addition of biochar would
decrease endocrine activity associated with biosolids treatments,
high biochar application rates (100 t ha�1) actually increased ac-
tivity levels, albeit by a small but significant amount. This suggested
that this particular biochar may be a source of AhR active com-
pounds, whichmay reflect the presence of PAHs or numerous other
classes of AhR agonists (DeGroot et al., 2011; Denison et al., 2011) in
the biochar-amended soil. Together, these results indicate that
while biochar (walnut shell, 900 �C) can positively affect plant
growth, it might also contribute chemicals into the soil that
potentially could have endocrine-disrupting activity. The positive
CALUX bioassay results presented here suggest the need for non-
target analysis of the biochar to confirm and quantify which
chemicals are inducing this response.

The biochar rate that induced this effect (100 t ha�1) was above
the average agronomic rate (10e20 t ha�1), so while a small



Fig. 3. Regressions of plant biomass versus soil AhR activity for (a) shoots and (b)
roots. P-values from linear regressions are reported in each panel.
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increase in AhR activity was observed with the 10 t ha�1 sample, it
is unlikely that biochar at normal environmental application levels
would be of toxicological concern. Further, the AhR activity in the
soil does not appear to be coupled with effects on plant growth
(Fig. 3, R2 < 0.10 and p > 0.10 for all plant/tissue combinations),
suggesting that low AhR activity associated with biochar does not
affect crop yield.

The PAHs potentially present in biochars may be taken up by
crops, resulting in a potential source of exposure to humans (Zohair
et al., 2006). Therefore, to ensure agronomic safety of biochar
application, the presence and activity of endocrine-active com-
pounds in biochar should be explored further, using both quanti-
tative analytical tools to measure PAHs, dioxins, and other
endocrine-active compounds. Highly sensitive bioanalytical as-
says such as CALUX can help to assess the biological activity of such
compounds. While the biochar used in this study (walnut shell,
900 �C) is an isolated example and these results do not apply to all
chars, the method developed in this study provides a tool for rapid
screening of complex environmental matrices including other
biochars, and the results suggest a need to perform non-target
analysis on this char. CALUX has considerable potential as a low-
cost, sensitive tool to screen biological and ecological effects of
complex mixtures of compounds in environmental samples.
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